Angiotensin II releases 20-HETE from rat renal microvessels.

نویسندگان

  • K D Croft
  • J C McGiff
  • A Sanchez-Mendoza
  • M A Carroll
چکیده

We studied hydroxyeicosatetraenoic acid (HETE) release in response to ANG II from preglomerular microvessels (PGMVs), the vascular segment governing changes in renal vascular resistance. PGMVs were isolated from Sprague-Dawley rats and incubated with NADPH and hormones at 37 degrees C. Eicosanoids were extracted, and cytochrome P-450 (CYP)-derived HETEs were purified and quantitated by negative chemical ionization gas chromatography-mass spectroscopy. PGMVs produced primarily 20- and 19-HETEs, namely, 7.9 +/- 1.7 and 2.2 +/- 0.5 ng/mg protein, respectively. ANG II (5 nM) increased CYP-HETE release by two- to threefold; bradykinin, phenylephrine, and Ca(2+) ionophore were without effect. [Sar(1)]ANG II (0.1-100 microM) dose dependently stimulated 19- and 20-HETEs, an effect blocked by the AT(2)-receptor antagonist PD-123319 as well as by U-73122, a phospholipase C inhibitor. Microvascular 20-HETE release was increased more than twofold by the third day in response to ANG II (120 ng. kg(-1). min(-1)) infused subcutaneously for 2 wk; it was not further enhanced after 14 days, although blood pressure continued to rise. Thus an AT(2)-phospholipse C effector unit is associated with synthesis of a vasoconstrictor product, 20-HETE, in a key renovascular segment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

20-Hydroxyeicosatetraenoic Acid Contributes to the Inhibition of K+ Channel Activity and Vasoconstrictor Response to Angiotensin II in Rat Renal Microvessels

The present study examined whether 20-hydroxyeicosatetraenoic acid (HETE) contributes to the vasoconstrictor effect of angiotensin II (ANG II) in renal microvessels by preventing activation of the large conductance Ca(2+)-activated K(+) channel (KCa) in vascular smooth muscle (VSM) cells. ANG II increased the production of 20-HETE in rat renal microvessels. This response was attenuated by the 2...

متن کامل

Renal arterial 20-hydroxyeicosatetraenoic acid levels: regulation by cyclooxygenase.

20-HETE, a potent vasoconstrictor, is generated by cytochrome P-450 omega-hydroxylases and is the principal eicosanoid produced by preglomerular microvessels. It is released from preglomerular microvessels by ANG II and is subject to metabolism by cyclooxygenase (COX). Because low-salt (LS) intake stimulates the renin-angiotensin system and induces renal cortical COX-2 expression, we examined 2...

متن کامل

Induction of angiotensin-converting enzyme and activation of the renin-angiotensin system contribute to 20-hydroxyeicosatetraenoic acid-mediated endothelial dysfunction.

OBJECTIVE 20-hydroxyeicosatetraenoic acid (20-HETE) promotes endothelial dysfunction by uncoupling endothelial NO synthase, stimulating O(2)(-) production, and reducing NO bioavailability. Moreover, 20-HETE-dependent vascular dysfunction and hypertension are associated with upregulation of the renin-angiotensin system This study was undertaken to examine the contribution of renin-angiotensin sy...

متن کامل

Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension.

Increased vascular 20-HETE is associated with hypertension and activation of the renin-angiotensin system (RAS) through induction of vascular angiotensin-converting enzyme (ACE) expression. Cyp4a12tg mice, whose Cyp4a12-20-HETE synthase expression is under the control of a tetracycline (doxycycline, DOX) promoter, were used to assess the contribution of ACE/RAS to microvascular remodeling in 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 279 3  شماره 

صفحات  -

تاریخ انتشار 2000